what does it mean for a function to be dense
In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in 10 if every signal of Ten either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dumbo subset of the real numbers because every existent number either is a rational number or has a rational number arbitrarily close to it (run into Diophantine approximation). Formally, is dense in if the smallest airtight subset of containing is itself.[1]
The density of a topological infinite is the least cardinality of a dense subset of
Definition [edit]
A subset of a topological space is said to be a dumbo subset of if any of the following equivalent conditions are satisfied:
- The smallest airtight subset of containing is itself.
- The closure of in is equal to That is,
- The interior of the complement of is empty. That is,
- Every point in either belongs to or is a limit point of
- For every every neighborhood of intersects that is,
- intersects every not-empty open subset of
and if is a footing of open sets for the topology on and so this list can be extended to include:
- For every every basic neighborhood of intersects
- intersects every non-empty
Density in metric spaces [edit]
An alternative definition of dumbo fix in the case of metric spaces is the following. When the topology of is given by a metric, the closure of in is the union of and the set up of all limits of sequences of elements in (its limit points),
Then is dense in if
If is a sequence of dense open sets in a complete metric space, then is likewise dense in This fact is one of the equivalent forms of the Baire category theorem.
Examples [edit]
The real numbers with the usual topology have the rational numbers as a countable dense subset which shows that the cardinality of a dense subset of a topological space may exist strictly smaller than the cardinality of the space itself. The irrational numbers are another dense subset which shows that a topological space may have several disjoint dumbo subsets (in particular, two dense subsets may be each other'due south complements), and they need not fifty-fifty be of the same cardinality. Perhaps even more than surprisingly, both the rationals and the irrationals have empty interiors, showing that dumbo sets demand not incorporate whatsoever non-empty open fix. The intersection of 2 dense open subsets of a topological space is once again dense and open.[proof 1] The empty prepare is a dumbo subset of itself. But every dense subset of a non-empty space must too exist non-empty.
By the Weierstrass approximation theorem, any given circuitous-valued continuous office divers on a closed interval can exist uniformly approximated every bit closely as desired by a polynomial function. In other words, the polynomial functions are dumbo in the infinite of continuous complex-valued functions on the interval equipped with the supremum norm.
Every metric space is dumbo in its completion.
Properties [edit]
Every topological space is a dense subset of itself. For a set equipped with the discrete topology, the whole space is the merely dense subset. Every non-empty subset of a fix equipped with the petty topology is dense, and every topology for which every non-empty subset is dense must be trivial.
Denseness is transitive: Given three subsets and of a topological space with such that is dense in and is dumbo in (in the respective subspace topology) then is likewise dense in
The paradigm of a dense subset under a surjective continuous function is again dense. The density of a topological space (the least of the cardinalities of its dense subsets) is a topological invariant.
A topological space with a connected dense subset is necessarily connected itself.
Continuous functions into Hausdorff spaces are adamant by their values on dense subsets: if 2 continuous functions into a Hausdorff space concord on a dense subset of then they agree on all of
For metric spaces there are universal spaces, into which all spaces of given density tin be embedded: a metric space of density is isometric to a subspace of the space of real continuous functions on the production of copies of the unit interval. [2]
[edit]
A point of a subset of a topological infinite is called a limit point of (in ) if every neighbourhood of also contains a point of other than itself, and an isolated point of otherwise. A subset without isolated points is said to be dense-in-itself.
A subset of a topological space is called nowhere dense (in ) if there is no neighborhood in on which is dumbo. Equivalently, a subset of a topological space is nowhere dense if and only if the interior of its closure is empty. The interior of the complement of a nowhere dense set is always dense. The complement of a closed nowhere dense set is a dense open up set. Given a topological space a subset of that can be expressed as the wedlock of countably many nowhere dense subsets of is chosen meagre. The rational numbers, while dense in the real numbers, are meagre as a subset of the reals.
A topological space with a countable dense subset is called separable. A topological space is a Baire infinite if and merely if the intersection of countably many dense open up sets is ever dense. A topological space is called resolvable if it is the matrimony of two disjoint dense subsets. More generally, a topological space is called κ-resolvable for a cardinal κ if it contains κ pairwise disjoint dense sets.
An embedding of a topological space as a dense subset of a compact space is called a compactification of
A linear operator between topological vector spaces and is said to be densely defined if its domain is a dense subset of and if its range is contained within Come across also Continuous linear extension.
A topological space is hyperconnected if and only if every nonempty open set up is dense in A topological space is submaximal if and only if every dense subset is open.
If is a metric space, and then a non-empty subset is said to exist -dense if
One tin then show that is dense in if and but if information technology is ε-dumbo for every
Run into also [edit]
- Blumberg theorem – Any real function on R admits a continuous restriction on a dense subset of R
- Dumbo order
- Dense (lattice theory)
References [edit]
- ^ Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN0-486-68735-X
- ^ Kleiber, Martin; Pervin, William J. (1969). "A generalized Banach-Mazur theorem". Bull. Austral. Math. Soc. 1 (2): 169–173. doi:x.1017/S0004972700041411.
proofs
General references [edit]
- Nicolas Bourbaki (1989) [1971]. General Topology, Chapters 1–4. Elements of Mathematics. Springer-Verlag. ISBN3-540-64241-two.
- Bourbaki, Nicolas (1989) [1966]. General Topology: Capacity i–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN978-3-540-64241-1. OCLC 18588129.
- Dixmier, Jacques (1984). General Topology. Undergraduate Texts in Mathematics. Translated by Berberian, S. Grand. New York: Springer-Verlag. ISBN978-0-387-90972-i. OCLC 10277303.
- Munkres, James R. (2000). Topology (2nd ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN978-0-thirteen-181629-ix. OCLC 42683260.
- Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN978-0-486-68735-3, MR 0507446
- Willard, Stephen (2004) [1970]. General Topology (First ed.). Mineola, Northward.Y.: Dover Publications. ISBN978-0-486-43479-7. OCLC 115240.
Source: https://en.wikipedia.org/wiki/Dense_set
0 Response to "what does it mean for a function to be dense"
Post a Comment